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Geotechnical Reliability of  Levees

by

Thomas F. Wolff1

ABSTRACT

The Corps of Engineers now performs cost-benefit analyses in a probabilistic framework.
In support of such studies, geotechnical engineers must quantify the reliability of levees and other
earth structures.  Resource constraints for planning-level studies require that methods used permit
the use of existing computer programs, be easy to implement in practice, and be useful where data
are limited.

This paper reviews past Corps’ guidance for assessing the geotechnical reliability of
existing levees and reports the results of a research study to develop an improved and more
comprehensive approach.  In the developed methodology, several modes of levee performance are
analyzed using a probabilistic capacity-demand model.  By replicate analyses at different water
heights, a conditional-probability of failure function for each mode can be developed as a function
of flood water elevation. These in turn can be combined to develop a composite probability-of-
failure function.  Examples are provided for slope stability and underseepage, and other modes are
discussed.  The change in reliability for a levee subjected to increasing water heights is illustrated.

Based on the research, a new Engineering Circular (EC) is under development to
implement the methodology in the Corps.  However, there are still a number of known limitations
for which additional research and development appear warranted.  These are discussed.

INTRODUCTION

When the Corps of Engineers proposes construction of new levees or improvement of
existing levees (typically raising the height), economic studies are required to assess the benefits
and costs.  Where an existing levee is present, the project benefits accrue from the increase in the
degree of protection.  Economic assessment of the improvement in turn requires an engineering
determination of the probable level of protection afforded by the existing levee.

A research project by the author (Wolff, 1994) at Michigan State University involved
developing and testing procedures that can be used by geotechnical engineers to assign
conditional probabilities of failure for existing levees as functions of flood water elevation.  Such
functions may be used by economists to estimate benefits from proposed levee improvements.
More recently, the author, under contract with Shannon and Wilson, Inc., to the Corps, prepared
a draft Engineering Circular (EC) titled Risk-Based Analysis in Geotechnical Engineering for
Support of Planning Studies (U.S. Army, 1997), which is in press at the time of this conference.
It includes two appendices; Appendix A is entitled An Overview of Probabilistic Analysis for
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Geotechnical Engineering Problems (Wolff and Shannon and Wilson, 1997).  Appendix B is the
full text of the research report (Wolff, 1994) discussed above.

The new EC and its two appendices provide the current guidance for reliability assessment
of levees in support of planning studies.  This paper summarizes the recommended methodology,
the research leading to it, and some remaining shortcomings that warrant further study.

EARLIER PRACTICE FOR EVALATING EXISTING LEVEES

Prior to 1991, existing levees that had not been designed or constructed to Corps’
standards were often considered to be non-existent in economic analysis or to afford protection to
some low and rather arbitrary elevation. (ETL 1110-2-328, U.S. Army, 1992)  These assumptions
are no longer permitted; in guidance issued in 1991-92, an existing levee is considered to afford
protection with some associated probability.

Probable Failure and Non-Failure Points.  Policy Guidance Letter No. 26 (U.S. Army,
1991) and draft ETL 1110-2-328, Stability Evaluation of Existing Levees for Benefit
Determination (U.S. Army, 1992) provided simplistic quantitative guidance for assessing
geotechnical reliability of existing levees.  PGL No. 26 introduced the concept of levee reliability
as a function of floodwater elevation, and introduced the concepts of probable failure point and
probable non-failure point:

...commands...(i.e. Corps district and division offices) making reliability
determinations should gather information to enable them to identify two points...
The highest vertical elevation on the levee such that it is highly likely that the
levee would not fail if the water surface would reach this level... shall be referred
to as the Probable Non-Failure Point (PNP)... The lowest vertical elevation on
the levee such that it is highly likely that the levee would fail... shall be referred to
as the Probable Failure Point (PFP).. As used here, "highly likely" means 85+
percent confidence...

PGL No. 26 went on to state:

If the form of the probability distribution is not known, a linear relationship as
shown in the enclosed example, is an acceptable approach for calculating the
benefits associated with the existing levees.

PGL No. 26 took the probability of failure to increase linearly with flood water height
from 0.15 at the PNP to 0.85 at the PFP.  This assumption would permit an economist, in the
absence of any further engineering analysis, to quantify reliability as a linear function. The
engineer needs only, by some means, to identify flood water elevations for which the levee is
considered 15 and 85 percent reliable.

Shape of Reliability Function.  The assumption of linearity is expedient, and is the least-
biased assumption where only two points are known and no other information is present.
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However, the assumption of linearity may or may not be acceptable once some additional
information is known.  One of the objectives of the research was to determine what is in fact a
reasonable function shape based on the results of some engineering analyses for typical levee cross
sections and typical parameter values.

The Template Method.  In ETL 1110-2-328, the template method was presented for
determining PNP and the PFP.  In this method, stated to be applicable only to levee cross-sections
that have met other requirements of geometry, seepage, and slope stability, two idealized cross-
sections, considered to meet desirable and minimal design standards, are drawn and fit within the
cross-section of the existing levee.  When the templates are matched to the existing cross-section
at the toe points, the tops of these two templates are taken to be the PNP and PFP, respectively.

The template method for determination of the PNP for a "typical" clay levee by the ETL is
illustrated in Figure 1.  For a typical sand levee, the template crown would be widened to 12' and
the side slopes flattened to 1v on 4h.  The template method for determination of the PFP for a
typical clay levee is shown in Figure 2.  For a typical sand levee, the template crown would be
widened to 8' and the side slopes flattened to 1v on 3h.

Existing Levee
1v on 1.5h

1v on 3h

5' crown

10' crown

PNP template

PNP

Figure 1.  Template for PNP - clay levee

Existing Levee
1v on 1.5h

1v on 2h

5' crown

6' crown

PFP template

PFP

Figure 2.  Template for PFP - clay levee
Implied Assumptions Regarding Slope Stability.  When the definitions of the PNP and PFP

are considered in conjunction with the template method, two significant assumptions are implied:

1) The PNP template, defined to be "representative of a stable levee section for the
soils involved and having an appropriate crest width and side slopes", is implied
to have a reliability of 85% and a probability of failure 15%.
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2) The PFP template, defined to be a reduced section at which a levee would be
stable for reduced periods of time, is implied to have a reliability of 15% and a
probability of failure of 85%.

Reasonableness of these Assumptions.  The Pr(f) = 0.15 associated with the elevation of
the PNP is unreasonably high.  Given this probability value, about 1 in 6 new levees built to 1V on
3H slopes would be expected to fail. Various studies (e.g. Wolff, 1985; Shannon and Wilson,
1994, Vrouwenvelder, 1987) indicate that dams, levees and dikes designed to Corps criteria or

Dutch criteria would be expected to have probabilities of failure on the order of 10
-3
, 10

-4
, and

even lower.  Hence, the conditional probability of failure associated with the PNP elevation
determined from the template method should be expected to be in the range of perhaps 0.001 to
0.0001, not 0.15.

The Pr(f) = 0.85 associated with the elevation of the PFP also appears to be high in the
context of experience, although probably not so much as for the PNP template.  If an engineer
judged this section equally likely to fail as to stand up, which seams to be a reasonable
assumption,  the section would correspond to a Prf = 0.50 rather than 0.85.

As slope stability has a well-developed mathematical basis, and is relatable to measurable
soil properties, it is a candidate for inclusion in a probabilistic levee reliability methodology.

Performance modes other than slope stability. The template method was the only
procedure sufficiently quantified to permit assigning probability values, and it presumably relates
primarily to slope stability.  Other performance modes were required to be considered, but no
quantitative methods to do so were presented. Other potential performance modes include:

1) Safety against overtopping, including flood duration and ability of levee materials
to endure that duration.

2) Safety against underseepage with associated sand boils and piping.  This is a well-
recognized hazard not even considered in the template method.  For underseepage,
safety is essentially independent of crown width and slopes; but is highly dependent
on foundation stratigraphy.

3) Safety against through-seepage and associated internal erosion, piping, or surface
erosion of the landside slope (cited in PGL 26).  This mode is related to the levee
template and material; however equating of the PNP and PFP levels to Pr(f) = 0.15
and 0.85 does not directly follow from any through-seepage considerations.

4) Safety against surface erosion of slopes and crest resulting from rainfall  (cited
in PGL 26). This is primarily related to slope, material type, and vegetative cover.
The PNP and PFP are not directly related to these factors.
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5) Safety against surface erosion due to current and wave attack on the riverside
slope (not specifically cited in PGL 26).  During high stages when the upper part
of the riverside slope is exposed to attack, current velocities are higher, and fetch
distances are longer.

6) Flood duration. Some levees may be subjected to significant water heights for
many months. When this occurs, the phreatic surface within the levee will rise,
increasing pore pressures and increasing the risk of failure due to through-seepage,
underseepage and slope stability. This is acknowledged in a rudimentary way in the
draft ETL which reduces the crest width when the levee is exposed to flood
heights for only a limited time.

7) Geometry beyond the levee toe, such as distance to the river, location and depth
of borrow areas, and presence or absence of vegetation and tree cover between the
levee. This is not considered in the template method.  These conditions may impact
slope stability, underseepage, current velocities, and wave fetch distance.

8) Other items from the preliminary inspection, such as "vegetation ... animal
burrows, man-made excavation through surface impervious layers, ....cracks, toe-
undercutting, slides, and ...soil creep "  are to be considered in developing the
function, but no guidance is provided as to  how to do so.

THE CONDITIONAL PROBABILITY OF FAILURE FUNCTION

The research (Wolff, 1994) and the forthcoming EC take the approach of constructing a
conditional probability of failure function dependent on flood water elevation. A number of
performance modes are considered, a separate function is developed relating the conditional
probability of failure for each mode to flood water elevation, and these are then combined.

The conditional probability of failure can be written as:

Pr(f) = Pr(failure | FWE) = f(FWE, X1, X2, … Xn) (1)

In the above expression, the symbol "|" is read given and the variable FWE is the flood
water elevation. The random variables X1 through Xn denote relevant parameters such as soil
strength, permeability, top stratum thickness, etc. Equation 1 can be restated as follows: “The
probability of failure, given the flood water elevation, is a function of the flood water elevation
and other random variables.”

Two extreme values of the function can be readily estimated by engineering judgment.
For flood water  at the  same level as the landside toe (base elevation) of the levee, Pf = 0; for
flood water at or near the levee crown (top elevation), Pf → 1.00.  The question of primary
interest, however, is the shape of the function between these extremes. Quantifying this shape is
the focus herein; how reliable might the levee be for, say, a  ten or twenty-year flood event that
reaches half or three-quarters the height of the levee?
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Reliability (R) is defined as:

R = 1 − Pf (2)

hence, for any flood water elevation, the probability of failure and reliability must sum to unity.
For flood water part way up a levee, R could be near zero or near unity, depending on factors
such as levee geometry, soil strength and permeability, foundation stratigraphy, etc.  Five possible
shapes of the R = f(FWE) function are illustrated in Figure 3.  For a "good" levee, the probability
of failure may remain low and the reliability remain high until the flood water elevation is rather
high.  In contrast, a "poor" levee may experience greatly reduced reliability when subjected to
even a small flood head.  It is hypothesized that some real levees may follow the highlighted
intermediate curve, which is similar in shape to the "good" case for small floods, but reverses to
approach the "poor" case for floods of significant height.  Finally, a straight line function is
shown, similar to the previously-assumed linear relation between reliability and flood height.

Levee

0.00 1.00

1.00 0 00

Probability of Failure

Reliability

“good” levee

“poor” levee

Figure 3.  Possible Reliability vs. Flood Water Elevation Functions for Existing Levees

RELATED RELIABILITY ANALYSIS PROCEDURES USED BY THE CORPS

Quantifying geotechnical reliability for planning studies poses a challenge.  Many
published techniques are too complex for routine practice, require more data than will be
available, or require specialized computer programs. Given these constraints, the selected
probabilistic methods must be based on some combination of limited testing and experience, and
existing procedures and computer programs (e.g. for slope stability and seepage analysis) must be
used as much as feasible.

The procedures for constructing conditional Pr(f) functions are built on earlier-developed
methodology for navigation structures. Several studies have been made to develop procedures
(Wolff and Wang, 1992a, 1992b; Shannon and Wilson and Wolff, 1994) and to promulgate
guidance (U.S. Army, 1992a).  In general, these methods are based on expressing the uncertainty
in structural performance as a function of the uncertainty in the values of the variables in an
associated performance model, such as a slope stability or underseepage analysis.
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GENERAL METHODOLOGY

The term probability of unsatisfactory performance, Pr(U) is often used in Corps
reliability guidance (U.S. Army, 1992a,b) in lieu of the more common probability of failure Pr(f),
to reflect the fact that remedial measures are expected to be taken before a catastrophic failure
condition becomes imminent.  However, for existing levees, the latter term may be accurate.  In
economic risk assessments, Pr(U) or Pr(f) values for several performance modes are combined
with economic consequences (flooding, loss of service, etc.) to determine probabilistic benefits
and costs.  Ideally, one would like to obtain “absolute” values for Pr(U) or Pr(f).  However,
several factors restrict the task to calculating comparative measures.  These include limited data,
lack of knowledge regarding the shape of probability distributions, and the use of approximations
such as first-order second-moment (FOSM) methods, which facilitate the use of existing
computer programs.

Determining the Reliability Index.  The basic scheme for reliability analysis is summarized
in Corps’ guidance (U.S. Army, 1992a,b) and is only briefly reviewed here. Comparative
reliability is measured by the reliability index β.  As illustrated in Figure 4, β is the number of
standard deviations by which the expected value of the performance function exceeds the limit
state. The natural log of the factor of safety, ln FS, is taken as the performance function and the
condition ln FS = 0 is taken as the limit state.  β incorporates the information inherent in the
factor of safety, but additionally provides a measure of the relative certainty or uncertainty
regarding parameter values.  Calculating β involves five steps:

1) Identifying a performance function and limit state, typically ln FS = 0.
2) Identifying the random variables contributing uncertainty.
3) Characterizing the random variables by of their expected values E[X], coefficients

of variation Vx and, where necessary, their correlation coefficients ρX,Y.
4) Determining the expected value and standard deviation of the performance

function using the Taylor’s Series Finite Difference (TSFD) method.
5) Evaluating β from the results of step 4.

For step 1, the safety factor against slope failure is commonly determined using the
UTEXAS computer program (Edris and Wright, 1987).  For underseepage, the factor of safety is
taken as the ratio of the critical gradient ic to the exit gradient io at the landside toe (U.S. Army,
1956).  Exit gradients may be calculated by hand solution, spreadsheet, or with the program
LEVEEMSU (Wolff, 1989).  For other performance modes, widely-accepted performance
functions and limit may not be available to the same extent as for slope stability and underseepage;
additional research may be required.

For step 2, random variables for slope stability are typically the shear strength parameters
c and φ. For underseepage analysis they are typically the horizontal permeability of pervious
substratum foundation materials kf, the vertical permeability of semipervious top blanket materials
kb,, and the thickness of the top blanket at the landside levee toe, z.
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parameter distribution
φ

f (φ)

ln FS

f(ln FS)

0

Pr(f)

slope stability model

TSFD
integration

E[φ]

σφ

E[ln FS]

σ ln FS

β σ ln FS

distribution on ln FS

Figure 4.  Probability of Failure, Reliability Index, and Method of Moments

For step 3, where sufficient data are available, the probabilistic moments may be calculated
by standard statistical means.  However, for many existing structures, they must be assigned from
limited data and judgment based on similar structures.  The standard deviation can be obtained by
multiplying the expected value by an estimated coefficient of variation, based on a limited but
growing body of data.  Where no data are available, values can often be estimated  by taking the
engineers’ judgment regarding reasonable parameter limits as corresponding to the expected value
plus and minus 2.5 or 3.0 standard deviations.

For step 4, the moments of the performance function are estimated from the moments of
the random variables.  E[FS] can be approximated using the Taylor’s series first-order, second-
moment (FOSM) mean value approach as:

E[FS] = FS(E[X1], E[X2]…E[Xn]) (3)

where Xi represents the random variables such as c, φ, kf, kb, or z. In other words, the expected
value of the performance function is taken as the value of the function evaluated at the expected
values of the random variables.
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Continuing with the Taylor’s series approach, the standard deviation of the factor of safety
is the square root of the variance of the factor of safety, which is calculated as

Var FS
FS
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X

i j
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Where  random variables are taken to be independent, the second summation drops out.

The partial derivatives are calculated at the expected value of each random variable.  More
sophisticated methods have been proposed, such as Hasofer and Lind’s (1977) method, wherein
the Taylor’s series is expanded about an unknown “failure point” by successive iteration. This has
the advantage of providing invariant solutions; however, its computational complexity presently
limits its practicality for planning-level studies; each evaluation of a performance function requires
a computer run, and the method requires considerable iteration.  Using existing programs, the
partial derivatives in Equation 4 may be estimated numerically, using finite differences, as
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where Xi+ and Xi- represent the random variable Xi taken at some increment above and below the
expected value.  Although a very small increment would give the most accurate value, Corps’
practice has been to take the increment at  + 1 σ from the expected value.  This large increment
picks up some of the behavior of nonlinear functions over their most probable range, and leads to
computational simplicity. With this increment and independent random variables, Equation 4
becomes:
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Finally, in step 5, β is calculated as previously shown in Figure 4:

β
σ

=
E FS

FS

[ln ]

ln

(7)

The required probabilistic moments for ln FS are determined from the moments for FS as:

( )σ ln lnFS FSV= +1 2 (8)

( )E FS E FS FS[ln ] ln [ ] ln= −
σ 2

2
(9)

Although not absolute measures of reliability, β values provide consistent comparisons
across performance modes and across structures.  They permit comparing the relative reliability of
one structure to another, the relative reliability of a structure for different performance modes
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such as slope failure and seepage failure, and the relative change in reliability of a structure
subjected to changing loads, such as a levee embankment subjected to rising water levels.

Estimating Pr(f).  With comparative reliability expressed as β, planners have a means
compare the relative need for remedial work among several structures or components.
Nevertheless, probability values Pr(f) are often desired as multipliers for the economic
consequences of adverse performance.  In this case, ln FS is assumed normally distributed and
Pr(f) is taken as the cumulative probability for the standard normal distribution evaluated at -β
standard deviations:

Pr( ) ( )U = −Φ β (10)

While these are not precise probability values, due to the numerous assumptions, the
resulting expected costs of alternatives are considered to provide valid comparisons.

EXAMPLE PROBLEMS

To investigate the relationships between Pr(f) and flood height, two example problems
were analyzed in the research.  Figure 5 shows one of these, a pervious sand levee overlying a thin
clay top blanket which in turn overlies a thick pervious sand substratum.  This section, although
deliberately made steep and pervious to illustrate the change in Pr(f) with flood height, is not
unlike some private levees along the upper Mississippi and Illinois Rivers.  The second example
was a clay levee on a clay top blanket with irregular geometry.

440

420

400

380

360

0-100 100

10' crown at el. 420

1V on 2.5 side slopes
8 ft clay top blanket

80 ft thick pervious sand substratum
Extends to el. 312.0

Sand levee with clay face

Figure 5.  Cross-Section for Pervious Sand Levee Example
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EXAMPLE UNDERSEEPAGE ANALYSIS

Using the methodology previously described, probabilistic underseepage analyses were
performed for flood elevations ranging from el. 400, the natural ground surface, to el. 420, the
levee crown.  Random variables were characterized as shown in Table 1.  Using the permeability
values for the top blanket kb and kf, the moments of a new random variable, their ratio, was
calculated using the TSFD method.  E[FS] and var[FS] are calculated using Equation 6 as shown
in Table 2 for the highest water elevation. These were used to calculate β, and converted to Pr(f)
using Equation 10.  The resulting function relating the conditional probability of underseepage
failure to flood height is shown in Figure 6.  The function is S-shaped, and Pr(f) is low for
floodwater heights less than about one-half the levee height, even for an assumed cross-section
intended to represent potentially deficient conditions.

Table 1
Random Variables for Underseepage Analysis, Sand Levee Example

Parameter Expected Value Standard Deviation Coefficient of

Variation

kf 0.1 cm/s 0.03 cm/s 30%

kb 1 x 10-4  cm/s 0.3 x 10-4 cm/s 30%

z 8.0 ft 2.0 ft 25%

d 80 ft 5 ft 6.25%

Table 2
Probabilistic Underseepage Analysis for Water at Elevation 420. (H = 20. ft)

Run kf /kb z d ho i Variance Percent of
total Variance

1 1000 8.0 80.0 9.357 1.170
2 600 8.0 80.0 9.185 1.148
3 1400 8.0 80.0 9.451 1.181 0.000276 0.30
4 1000 6.0 80.0 9.265 1.544
5 1000 10.0 80.0 9.421 0.942 0.090606 99.69
6 1000 8.0 75.0 9.337 1.167
7 1000 8.0 85.0 9.375 1.172 0.000006 0.01

Total 0.090888 100.0
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The shape can be understood by reviewing Figure 5.  At low flood heights, the normal
curve representing ln FS is well to the right of the limit state.  As the flood height increases,
E[ln FS] decreases and the curve moves to the left, but Vln FS tends to stay constant, keeping the
width of the curve constant.  The area under the curve below the limit state (i.e., Pr(f) ) increases
at an increasing rate, beginning at about 10 ft of head in the example.  Once E[ln FS] drops below
0.0, occurring at about 15 ft of head in the example, the peak of the normal curve has moved
below the limit state.  Increasing heads continue to increase Pr(f), now in excess of 50%, but at a
decreasing rate. The shape of the curve is also consistent with observations during floods; even
substandard levee sections often perform adequately for low head conditions, but performance
can deteriorate rapidly as water levels increase.
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Figure 6.  Probability of Underseepage Failure vs. Floodwater Elevation

EXAMPLE SLOPE STABILITY ANALYSIS

Slope stability analyses were performed for the sand levee example in Figure 5 for a range
of water levels using UTEXAS2.  Random variables were characterized as shown in Table 3.
Two distinct piezometric surfaces were modeled in the two sand materials.  The piezometric
surface in the embankment was approximated as a straight line from the point where the flood
water intersects the riverside slope to the landside levee toe.  The piezometric surface in the
foundation was obtained from the expected value condition in the underseepage analyses. This
results in a piezometric surface in the foundation that is above the natural ground on the landside
of the levee.  Additional refinement could be made by making this piezometric surface a random
variable.
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Table 3
Random Variables for Slope Stability Analysis, Levee Reliability Example

Parameter Expected

Value

Standard

Deviation

Coefficient of

Variation

φ (embankment sand) 30 deg 2 deg 6.7%

su (clay foundation) 800 lb/ft2 320 lb/ft2 40%

φ (foundation sand) 34 deg 2 deg 5.9%

Changing strength parameters in the probabilistic analysis and changing piezometric
surfaces as the water level increases both lead to changes in the location of the critical surface.
With flood water to elevation 410, critical surfaces occur both in the foundation clay and near the
surface of the embankment (Figure 7).  As the water level increases and piezometric levels rise in
the sand embankment, the critical surfaces all move to the embankment.

Failure Surfaces of Problem 1
Water Elevation = 400

385

390

395

400

405

410

415

420

425

-10 0 10 20 30 40 50 60

Horizontal Distance, (feet)

E
le

va
tio

n,
 (

fe
et

)

slope geometry
slope geometry
Runs 1A, 5A, 7A, 8A
Runs 4A, 11A
Run 6A

Figure 7.  Critical Slip Surfaces for Floodwater to Mid-Height of Levee
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Figure 8.  Probability of Slope Failure vs. Floodwater Height

The resulting conditional Pr(f) function for slope stability is shown in Figure 8.  It is
observed that Pr(f) is almost negligible until the flood water reaches about three-quarters the levee
height, a point where the piezometric surface in the embankment begins to significantly affect the
stability of potential shallow failure surfaces on the landside slope.

A discontinuity in Pr(f) is observed as the flood height is increased from 10 ft to 15 ft,
Pr(f) abruptly decreases, then begins to rise again.  This illustrates an interesting facet of
probability analysis; Pr(f) is a function not only of the expected values of the factor of safety and
the underlying parameters, but also of their coefficients of variation.  In the present case, at a
flood height between 10 and 15 ft, some of the critical surfaces move from the foundation clay,
with a high coefficient of variation for its strength, to the embankment sands, for which the
coefficient of variation is smaller.  This decreases β and Pr(f).  Even though the safety factor may
decrease as the flood height increases, if the value of the smaller safety factor is more certain due
to the lesser strength uncertainty, Pr(f) may decrease.

OTHER PERFORMANCE MODES

The curves in Figures 6 and 8 illustrate the conditional Pr(f) for only two failure modes.
Other modes of potentially adverse performance include internal erosion from through-seepage,
and external erosion due to seepage exit, current velocity, and wave attack. Preliminary
approaches to analysis of some of these conditions are suggested in the research report (Wolff,
1994) and numbers are calculated for illustration; however, performance functions and limit states
for these modes are not nearly so well developed and accepted as those for slope stability and
underseepage.
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BUILDING THE COMPOSITE FUNCTION

Where Pr(f) versus flood height functions can be developed for each possible performance
mode, and where modes can be assumed independent, a total Pr(f) function can be developed by
combining the probabilities as a series system.  For an independent series system, the overall
reliability R is given by

R = R1 R2 …. Rn (11)

Applying Equation 11 at a series of flood water elevations gives:

R(FWE) = R1(FWE) R2 (FWE) … Rn (FWE)

(12)

Where modes have some correlation, as is likely the case for seepage and slope stability,
the assumption of independence is conservative and leads to an upper bound on the probability.

Figure 9 shows the combined conditional probability-of-failure function for the sand levee
example.  The functions for underseepage and slope stability have previously been discussed.  The
function for through-seepage was developed using a modification of Rock Island District design
criteria for sand levees.  The function for surface erosion was developed by assuming a critical
scour velocity and comparing it to the river velocity using a simple Manning equation approach;
more sophisticated models can undoubtedly be constructed using the Corps’ HEC models.
Finally, the “judgment” curve represents the probability values that can be assigned by the
engineer for items not explicity modeled, such as observed cracks and animal burrows.
Techniques to assign and calibrate such values require further study.
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Figure 9.  Combined Conditional Probability of Failure Function

REMAINING LIMITATIONS / AREAS FOR FURTHER STUDY

The illustrated methodology provides an important step to developing reliability functions
that include site-specific information regarding soil conditions along a levee; nevertheless, there
are many remaining limitations, and areas for further research.  These are summarized in
Appendix A to the forthcoming EC (Wolff and Shannon and Wilson, 1997).  They include:

1. Varying interpretations regarding the interpretation of probabilistic slope stability
analysis.  A slope is a system of an infinite number of possible failure surfaces.  As
the critical surface in deterministic analysis does not in general, coincide with that
for probabilistic analysis, a number of approaches can be developed which yield
different solutions.

 
2. Application of spatial correlation theory to soil parameters.  As soil is a continuous

medium, the appropriate characterization of uncertainty in a two-dimensional slope
stability or seepage analysis is dependent on the size of the modeled area and free
body.

3. Application of spatial correlation theory to long earth structures.  Similarly, real
levees may be many miles in length.  Intuitively, a long levee is less reliable than a
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replicate shorter one.  Elegant mathematical solutions are available to treat this
problem, however, appropriate values to use in such models remain problematical

SUMMARY AND CONCLUSIONS

Planning studies for rehabilitation of Corps’ projects now require quantifying the reliability
of embankments and other engineering features. Performing reliability analyses of existing
structures given resource constraints requires adapting probabilistic methods to use existing
computer programs and developing some simple approaches that can be used where little or no
test data are available. The reliability index concept, wherein uncertainty in performance is related
to the uncertainty in underlying random variables, is gaining application for Corps’ studies, and is
a convenient approach for assessing levee reliability.

Given that Pr(f) can be calculated for different performance modes and different flood
water elevations, these values can be combined to provide the desired conditional probability-of-
failure functions; however, the underlying deterministic models for performance modes other than
slope stability and underseepage warrant further study.

For levees subjected to increasing floodwater heights, the probability of failure versus
floodwater height function is typically S-shaped.  Probabilities of failure may be low at low heads,
but reliability may deteriorate rapidly as flood water levels increase.  This finding, supported
mathematically herein, agrees with engineering intuition and observed behavior of levees during
floods.
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